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Abstract

The problem of the approximate construction of the viability kernel for a generalized dynamical system, the evolution of which is
specified directly by an attainability set, is investigated under phase constraints. A backward grid method, based on the substitution
of the phase space by pixels and a consideration of “inverse” attainability sets, is proposed. The convergence of the method is proved.
© 2006 Elsevier Ltd. All rights reserved.

Generalized dynamical systems – the result of an axiomatic approach to control systems – have been investi-
gated intensively.1–6 Investigations in the theory of controllable systems can be extended to generalized dynamical
systems.7–11,a

Below, in a continuation of earlier publications (Refs. 12,13), results obtained previously in Ref. 14 are extended
to generalized dynamical systems.

1. Formulation of the problem

Consider a generalized dynamical system, the behaviour of which is specified by means of the multivalued mapping

(1.1)

where I = [t0, �] is a finite time interval. For specified (t*, x*) ∈ I × Rm and t* ∈ [t*, �] the symbol F(t*; t*, x*) denotes
the attainability set of the generalized dynamical system from the initial position (t*, x*) at the instant of time t*. We
will assume that the multivalued mapping (1.1) satisfies the following conditions 1◦–6◦.

1◦. The attainability set F(t*; t*, x*) is defined for all (t*, x*) ∈ I × Rm, t* ∈ [t*, �] and is a non-empty compactum in
the space Rm.

2◦. A constant M > 0 exists such that for all (t*, x*) ∈ I × Rm, � ∈ [0, � − t*] the following inequality holds
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The Hausdorf distance between the sets A ⊂ Rm and C ⊂ Rm is defined as

Here and below ||·|| denotes the Euclidean norm.

3◦. The following equality holds for any (t*, x*) ∈ I × Rm, t and t* (t* ≤ t < t* ≤ �)

4◦. For specified (t*, x*) ∈ I × Rm and t* ∈ [t0, t*] a point x* ∈ Rm exists such that x* ∈ F(t*; t*, x*).
5◦. A function �*(�) exists, which tends monotonically to zero when � ↓ 0, and such that

6◦. An L > 0 exists such that

We will state an assertion characterizing certain properties of generalized dynamical system (1.1).

Assertion 1.1. For all (t*, x*) ∈ I × Rm:

1) the equality F(t*; t*, x*) = {x*} holds;
2) the multivalued mapping � → F(t* + �; t*, x*) in the interval [0, � − t*] is continuous in the Hausdorf metric and

satisfies the inequality

The attainability sets F(t*; t*, x*), for example, of the differential inclusion

(1.2)

satisfy properties 1◦–6◦, where P is a compactum of the space of controls Rp, while the vector function f(t, x, u) satisfies
the following two conditions:

1) the function f(t, x, u) is continuous in the set of variables and a constant L1 ≥ 0 exists such that

2) a constant M1 ≥ 0 exists such that

Definition 1.1 ((Refs. 1,2)). Any function x(·): [t*, �] → Rm, x(t*) = x* which satisfies the inclusion
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will be called a trajectory of the generalized dynamical system (1.1), emerging from the initial position (t*, x*) ∈ I × Rm.
The set of such trajectories will be denoted by the symbol X(t*, x*).

We will also put

It is well known1,2 that any trajectory x(·) ∈ X(t*, x*) is continuous in the interval [t*, �], the set X(t*, x*) is closed
and the following equalities are satisfied

Suppose that, in addition to the generalized dynamical system (1.1), we are given the closed set � ⊂ I × Rm, which
has non-empty sections �(t) = {x ∈ Rm: (t, x) ∈ �} (t ∈ I). Suppose �(�) is a compactum in Rm.

We will say that the trajectory x(·) ∈ X(t*, x*) is viable in the set � if the inclusion (t, x(t)) ∈ � is satisfied for all
t ∈ [t*, �].

Definition 1.2. We will call the set of all points (t*, x*) ∈ I × Rm for which the trajectory x(·) ∈ X(t*, x*), viable in �,
exists, the viability kernel � of the generalized dynamical system (1.1) in the set �.

Obviously � ⊂ �.
We will investigate the problem of the approximate construction of the kernel �.

2. Time discretization

We will replace the time interval I by a finite set of instants. We will specify the sequence {�n} of subdivisions

of the section I with diameter �n = ti+1 − ti (i = 0, 1, . . . n − 1), satisfying the relation �n = (� − t0)/n; here, for each n,
there are its own instants ti of the subdivision �n.

We will assume

Here (t*, x*) ∈ I × Rm, t* ∈ [t0, t*], � > 0, X* ⊂ Rm.
The following two assertions hold.

Assertion 2.1. The following inclusion holds

Here and below F� when � ≥ 0 is the closure of the �-neighbourhood of the set F ⊂ Rm.

The inverse inclusion F̃−1(t∗; t∗, x∗) ⊂ F−1(t∗, t∗, x∗)�, generally speaking, does not hold for all � → 0.

Assertion 2.2. The following inequality holds
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For each subdivision �n there will be a corresponding sequence {�̃i} of numbers, specified recurrently

We will denote the greatest of the numbers of this sequence by the symbol �̃n.

Lemma 2.1. The following limit relation holds

In fact, it can be shown by induction that the following estimate holds

from which we have the inequality

which, by virtue of the limit relations

proves the correctness of this lemma.

For each subdivision �n there will be a corresponding sequence of set �̃n(ti) ⊂ Rm(ti ∈ �n), specified by recurrence
relations, beginning from the final instant tn = �.

Definition 2.1. We will assume that

We will define the limit of the sequence {�̃n(ti)}, when the diameter of the subdivision �n approaches zero.

Definition 2.2. We will assume that �̃0 is a set of all points (t*, x*) ∈ I × Rm, for which we obtain the sequence

such that (t*, x*) = lim(�n, xn).

Here and below tn(t*) = min(ti ∈ �n: t* ≤ ti); the limit is taken as n → ∞, unless otherwise indicated.
The inclusion �̃0 ⊂ � follows from Definition 2.2.
The set �̃0 is non-empty, since the equality �̃n(�) = �(�) holds and, consequently, the section �̃0(�) = {x ∈ Rm :

(�, x) ∈ �̃0} of the set �̃0 is non-empty.

Theorem 2.1. The set �̃0 is the viability kernel of the generalized dynamical system (1.1) in the set �.

Proof. We will first prove the inclusion �̃0 ⊂ �.
We fix an arbitrary point (t∗, x∗) ∈ �̃0 when t* < �. We obtain the sequence {(�n, xn) : �n = tn(t∗), xn ∈ �̃n(�n)}

such that

Consider the arbitrary number n. We will show that a trajectory

(2.1)

exists which satisfies the inclusions

(2.2)



710 A.A. Neznakhin / Journal of Applied Mathematics and Mechanics 70 (2006) 706–714

The following inclusion holds (see Definition 2.1)

where ti+1 = �n + �n ∈ �n, x̃
j+1 ∈ �̃n(ti+1). It follows from this inclusion (see the definition of the set F̃−1(·)) that

(2.3)

From the inequality (see property 5◦)

and relation (2.3) it follows that the following points exist

which satisfy the inequality

and so also the inequality

Hence, we have obtained the point xj+1 ∈ F(tj+1; �n, xn) which satisfies the inclusion

Replacing �n by tj+1, xn by x̃j+1 and repeating the previous constructions, we obtain the point

which satisfies the inequality

(2.4)

where x̃j+2 ∈ �̃n(tj+2).
It follows from the relation (see property 6◦)

that the following point exists

satisfying the inequality

and so also the inequality

Hence, bearing inequality (2.4) in mind, we have

Hence, we obtain the point xj+2 ∈ F(tj+2; tj+1, xj+1), which satisfies the inclusion
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Continuing this processing up to the instant tn = �, we obtain the remaining points xi ∈ F(ti; ti−1, xi−1), which satisfy
the inclusions

We have thereby proved the existence of the required trajectory (2.1), which satisfies inclusions (2.2).
We will now introduce a function which is a continuous extension of the trajectory obtained into the section [t*, �].

Suppose

For n = 1, 2, . . ., from the uniformly bounded and equicontinuous sequence {yn(t)} we can separate out a uniformly
converging subsequence. Without loss of generality, we will assume that the sequence {yn(t)} itself converges in [t*,
�] uniformly to a certain function x(t).

It is easy to show that the function x(·) is a trajectory of the generalized dynamical system (1.1): x(·) ∈ X(t*, x*).
We will show that the trajectory x(·) does not leave the phase constraints:

(2.5)

We fix an arbitrary instant t ∈ [t*, �] and put �n = tn(t) (everywhere henceforth n = 1, 2,. . .). By virtue of the inclusions
(see (2.2))

we obtain the points �n ∈ �(�n), which satisfy the inequalities

Consequently, together with the limit relations

(2.6)

the following limit relation (see Lemma 2.1) holds

(2.7)

The limit relation

(2.8)

then follows from the convergence lim �n = t, the boundedness of the sequence {xn} and the closedness of the set �.
The inclusion (2.5) is proved by virtue of limit relations (2.6)–(2.8).
Hence, for any point (t∗, x∗) ∈ �̃0 when t* < �, we obtain the trajectory x(·) ∈ X(t*, x*), which is viable in �.
It is also obvious that any point (t∗, x∗) ∈ �̃0 satisfies the inclusion (t*, x*) ∈ � when t* = �.
The inclusion �̃0 ⊂ � is proved.
We will prove the inverse inclusion � ⊂ �̃0.
Consider the subdivision �n of the time interval I and all the sections �(ti) (ti ∈ �n) of the set �, which are non-empty.

We will put Tn = {ti ∈ �n: �(ti) �= Ø}; obviously the set Tn possesses the property that if ti ∈ Tn, then ti+1 ∈ Tn.
We will show the correctness of the inclusion

(2.9)

The proof is carried out by induction, beginning from the final instant tn = �.
At the instant tn = � the inclusion (2.9) is satisfied by virtue of the equalities �(�) = �(�) = �̃n(θ)�̃n .
We will assume that at the instant ti+1 ∈ Tn the inclusion �(ti+1) ⊂ �̃n(ti+1)�̃i+1 is satisfied. We take an arbitrary

point xi ∈ �(ti); the following point corresponds to it
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Taking the point x̃i+1 ∈ �̃n(ti+1) closest to xi+1, by virtue of the induction assumption we have

Hence we have the inequality (see Assertion 2.2)

(2.10)

We take the point

as the closest to xi; then the following inequality holds (see Assertion 2.1)

(2.11)

It follows from inequality (2.10) that there is a point

which satisfies the inequality

and so, also, the inequality

Then, bearing inequality (2.11) in mind, we have

Since xi ∈ �(ti), the inclusion xi ∈ �(ti) holds; consequently, x̃t ∈ �(ti)�̃i and so x̃i ∈ �̃n(ti).
Since the choice of the point xi ∈ �(ti) is arbitrary, the inclusion �(ti) ⊂ �̃n(ti)�̃i is proved.
Moreover, inclusion (2.9) is proved.
We will use inclusion (2.9) to prove the inclusion � ⊂ �̃0.
When t* = � the inequalities �(t*) = �(�) and �̃0(t∗) = �(�) are satisfied. Consequently, the inclusion �(t∗) ⊂

�̃0(t∗) holds.
For any fixed t* < � we choose an arbitrary point (t*, x*) ∈ �. The trajectory x(t) ∈ X(t*, x*), which is viable in �,

corresponds to it.
We fix the number n. Suppose �n = tn(t*). It follows from the inclusions x(�n) ∈ �(�n) and (2.9) that a point

xn ∈ �̃n(�n) exists, which satisfies the inequality

Then, using the inequality

we have

whence, by virtue of the limit relation lim �n = 0 and Lemma 2.1, we obtain

Consequently, (t∗, x∗) ∈ �̃0.
When t* < � the inclusion �(t∗) ⊂ �̃0(t∗) is proved.
The inclusion � ⊂ �̃0 follows from relations �(�) ⊂ �̃0(�) and �(t∗) ⊂ �̃0(t∗)(t∗ < �).
The equality � ⊂ �̃0 follows from the inclusions �̃0 ⊂ �, � ⊂ �̃0. �
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3. Discretization of the phase space

We will replace the phase space Rm by a certain 	-grid. A number of constructions will correspond to each
subdivision �n.

A. We will subdivide the space Rm into m-dimensional cubes Bj with centres bj and vertices which are distant from
the centres by an amount 	n. We will choose the quantity 	n so that it satisfies the inequality

The infinite set of centres bj will be called the 	n-grid of the space Rm, and we will denote it by N	n (Rm).
Suppose X* is a certain compactum in Rm. We will isolate all the cubes Bj (j = 1, 2,. . ., J0), for which Bj ∩ X* �= Ø,

since the set X* is bounded, and the number J0 is finite. We will consider the centres bj (j = 1, 2,. . ., J0) of these
cubes. When � > 0 we will assume

Note that

B. We will assign a finite �n-grid to each set F(t*; t*, x*) ((t*, x*) ∈ I × Rm, t* ∈ [t*, �]) using a certain rule

such that

The number �n will be chosen to have any value which satisfies the inequality

We will assume that

Note that we have the estimate

C. We will specify the recurrent sequence {�̄i} of number �̄i

Suppose �̄n is the greatest of the numbers {�̄i}.

Lemma 3.1. The following limit relation holds

The proof of this lemma is similar to the proof the Lemma 2.1 and will not be given here.
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We will make the sequence {�̄n(ti)} of the sets �̄n(ti) ∈ N	n (Rm)(ti ∈ �n), specified recurrently, beginning from a
finite instant tn = �, correspond to each subdivision of �n.

Definition 3.1. We will assume that

Hence, the sequence {�̄n(ti)} is a backwardly specified sequence of sets �̄n(ti) on the grid N	n (Rm). We will
determine the limit of this sequence when the diameter of the subdivision �n approaches zero.

Definition 3.2. We will assume that �̄0 is a set of all points (t*, x*) ∈ I × Rm for which we have the sequence

such that (t*, x*) = lim(�n, xn).

It follows from Definition 3.2 that �̄0 ⊂ �.
The set �̄0 is non-empty, since the equality �̄n(�) = N	n

�̄n (�(�)) holds, and for the section �̄0(�) = {x ∈ Rm :
(�, x) ∈ �̄0} it is easy to prove the relation �̄0(θ) = �(�).

Theorem 3.1. The set �̄0 is the viability kernel of the generalized dynamical system (1.1) in the set �.

The proof is largely similar to the proof of Theorem 2.1 (the difference caused by the presence of constructions
from subsections A and B are of a technical character) and will not be given here.
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