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Abstract

The problem of the approximate construction of the viability kernel for a generalized dynamical system, the evolution of which is
specified directly by an attainability set, is investigated under phase constraints. A backward grid method, based on the substitution
of the phase space by pixels and a consideration of “inverse” attainability sets, is proposed. The convergence of the method is proved.
© 2006 Elsevier Ltd. All rights reserved.

Generalized dynamical systems — the result of an axiomatic approach to control systems — have been investi-
gated intensively.!~® Investigations in the theory of controllable systems can be extended to generalized dynamical
S 7-11,a

ystems.

Below, in a continuation of earlier publications (Refs. 12,13), results obtained previously in Ref. 14 are extended

to generalized dynamical systems.

1. Formulation of the problem

Consider a generalized dynamical system, the behaviour of which is specified by means of the multivalued mapping
F(:): IXIXR™ = 2%, (1.1)

where I={tg, 0] is a finite time interval. For specified (¢, x+) € I x R™ and " € [t«, 0] the symbol F! (" t+, x+) denotes
the attainability set of the generalized dynamical system from the initial position (¢, x+) at the instant of time # . We
will assume that the multivalued mapping (1.1) satisfies the following conditions 1°—6°.

1°. The attainability set F(t*; t«, xx) is defined for all (#+, x+) € I x R™, e [+, 8] and is a non-empty compactum in
the space R™.
2°. A constant M > 0 exists such that for all (¢+, xx) €I x R™, 8 € [0, 6 — #+] the following inequality holds

o({x4}, F(ty+ 8; 1, x4)) S MJ.
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The Hausdorf distance between the sets A C R” and C C R"™ is defined as
oA, C) = max{supdist(x, C), supdist(y, A)}; dist(x,C) = inf{||x-y|:ye C}.
xeA ye C

Here and below ||-|| denotes the Euclidean norm.
3°. The following equality holds for any (¢, x«+) € [ x R™, t and £ (t+ < r<t’ < 0)

F(t*; ty, x4) = J{F(t*5 t,x): x€ F(2; ty, Xy)}.

4°. For specified (, x")Yelx R™ and 1+ €1, f ] a point x+ € R™ exists such that X € F(i"; t+, x%).
5°. A function o (A) exists, which tends monotonically to zero when A | 0, and such that

Q(F (2 +8; 1y, x1) = x1, F(t, + 85 1, X5) — %) S3@*(|t) — 1)) + || x; — x,]))

Y(ty, x1), (tp, x,) € IXR™, V8 e [0,0-max(, 1,)].

6°. An L> 0 exists such that

QU(F(ty + 85 ty, x1) = Xy, F(ty + 85 1y, X5) — x,) SSL|x; — x|
Y(ty x1), (25, Xy) € IXR™, V&€ [0,0-=1t,].
We will state an assertion characterizing certain properties of generalized dynamical system (1.1).

Assertion 1.1. For all (¢, xx) €I x R™:

1) the equality F(+; t«, x+) = {x+} holds;
2) the multivalued mapping & — F(#+ +9; #x, x+) in the interval [0, 8 — #«] is continuous in the Hausdorf metric and
satisfies the inequality

Q(F(ty + 85 by, Xi), F(ty + 855 14, x,)) SM|S, -8, V8, 8,€ [0,0-1,].

The attainability sets F! (t*; t+, xx), for example, of the differential inclusion
ieco{f(t,x,u):ue P}, tel, xeR", (1.2)

satisfy properties 1°—6°, where P is a compactum of the space of controls R”, while the vector function f(¢, x, u) satisfies
the following two conditions:

1) the function f{t, x, u) is continuous in the set of variables and a constant L; > 0 exists such that

I £t xp, ) = £(2, X0 w)|| S Lyl x; = Xyf| s (2, %, 0), (2, x5, u) € IXR™ X P.

2) a constant M > 0 exists such that
If @, x, u)| <M,;, V(t,x,u)e IXR"xP.

Definition 1.1 ((Refs. 1,2)). Any function x(-): [+, 8] — R™, x(t+) = x+ which satisfies the inclusion
x(ty) € F(ty; t, x(8y)), Vi, t,el, t,<t,
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will be called a trajectory of the generalized dynamical system (1.1), emerging from the initial position (¢, xx) € I x R™.
The set of such trajectories will be denoted by the symbol X(#+, x«).

We will also put
X(t; 14, x5) = {x(t) € R" : x(-) € X(ty, x4)}.

It is well known!? that any trajectory x(-) € X(#+, x+) is continuous in the interval [#+, 0], the set X(#+, x+) is closed
and the following equalities are satisfied

X(t; tyy x5) = F(£; 14, x4), V(ty, x4) € IXR", Vte [t,,0].

Suppose that, in addition to the generalized dynamical system (1.1), we are given the closed set ® C I x R™, which
has non-empty sections ®(¢) = {x € R™: (t, x) € ®} (r € I). Suppose ®(0) is a compactum in R™.

We will say that the trajectory x(-) € X(#+, x=) is viable in the set ® if the inclusion (¢, x(¢)) € ® is satisfied for all
te [t 0].

Definition 1.2. We will call the set of all points (#+, x«) € I x R™ for which the trajectory x(-) € X(#+, x«), viable in ®,
exists, the viability kernel €2 of the generalized dynamical system (1.1) in the set ®.

Obviously Q2 C .
We will investigate the problem of the approximate construction of the kernel €2.

2. Time discretization

We will replace the time interval I by a finite set of instants. We will specify the sequence {I',} of subdivisions
T, = (t= 2. 1"=0)

of the section I with diameter A, =¢*!' — ¢ (i=0,1,...n—1), satisfying the relation A, =(8 — tp)/n; here, for each n,
there are its own instants # of the subdivision I';,.
We will assume

F 1y 1%, x%) = {x4€ R": x* € F(t*; t,, x4)}
i'—l(t*; t*, x*) = 2x* - F(t*; ty, x*), ©(A) = Ao*((1+M)A)
F (1 1%, X*%) = \U{F (t4: 1%, %) : x€ X*}.
Here (", x)eIx R™, t= € [ty, 1], A>0,X CR".
The following two assertions hold.
Assertion 2.1. The following inclusion holds

~ ~-1
F 1(t,,g; t¥, x*)C F (ty;t*, x*)m(,,,_,*), V(t*, x*)e IXR", Vi, e [2o, t*].

Here and below F when & > 0 is the closure of the e-neighbourhood of the set F C R™.
The inverse inclusion F~1(z,;r*, x*) € F~l(z,, t*, x*)s, generally speaking, does not hold for all § — 0.

Assertion 2.2. The following inequality holds
o(F (1% = &; 1%, X)) —xp, Flev—8; 1%, X;) = X3) SOL||x) - xy|

V(t*, x,), (t*, x,) € IXR", Ve [0, t*—1y].
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For each subdivision I',, there will be a corresponding sequence {&'} of numbers, specified recurrently

~n ~i+1

=0, &=w@A)+(A+LA)E", i=n-1n-2 .,0.
We will denote the greatest of the numbers of this sequence by the symbol &,,.

Lemma 2.1. The following limit relation holds
limg, = 0.
In fact, it can be shown by induction that the following estimate holds

~i

(n—i)LA
€ <e

"(n—i)o(4,), i=0,1,..,n,
from which we have the inequality
£, =< P01 0*((1+M)A,),
which, by virtue of the limit relations
limA, = 0, lim @*(A) = 0
A—0

proves the correctness of this lemma.

For each subdivision I',, there will be a corresponding sequence of set ,,(t') C R™(t € T',), specified by recurrence
relations, beginning from the final instant /" = 6.
Definition 2.1. We will assume that

Qu(8) = (8),, = B(B)

Qu(t) = ©(YeNF (51, Qa1 i = n-1,n-2,...,0.
We will define the limit of the sequence {$2,,(#))}, when the diameter of the subdivision I',, approaches zero.

Definition 2.2. We will assume that Q0 is a set of all points (#+, x+) € I x R™, for which we obtain the sequence
{(M %) 1M, = 1,(14), X, € Qu(n,)}
such that (¢+, x+) =1lim(ny,, x,).
Here and below #,(¢#+) = min(# € T',,: #+ < £); the limit is taken as n — oo, unless otherwise indicated.
The inclusion 2° C & follows from Definition 2.2.

The set €2° is non-empty, since the equality $2,,(8) = ®(8) holds and, consequently, the section £2°(8) = {x € R" :
(8, x) € Q0 of the set Q0 is non-empty.

Theorem 2.1. The set Q0 is the viability kernel of the generalized dynamical system (1.1) in the set ®.

Proof. We will first prove the inclusion Q0 C Q.
We fix an arbitrary point (7, x,) € Q0 when 7+ <6. We obtain the sequence {(M,, Xp) : M, = ty(ty), Xy € Qn )}
such that

(t4, x4) = lim(n,, x,).
Consider the arbitrary number n. We will show that a trajectory
x,(-) € X(n,, x,) (2.1
exists which satisfies the inclusions

x(t)e Qu(t)p-i, feT,, f2n, (2.2)
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The following inclusion holds (see Definition 2.1)
X, € f‘_l(n,‘; AR ALY
where ¢! =m, + A, €T, ¥ € Q,(t*1). It follows from this inclusion (see the definition of the set F~!(-)) that
I ox, e F(E i, Pt -F T (2.3)
From the inequality (see property 5°)
W(F( i, %) =2, F( i, 70 - # 4 < 0(a,)
and relation (2.3) it follows that the following points exist
e F@ i, x),
which satisfy the inequality
od* ! =20 - @ - 2] < 008y,
and so also the inequality

j+1

I+ -#* ! < w(a,).

Hence, we have obtained the point ¥leF (ti“; N> X,) Which satisfies the inclusion
Y*le f),,(tj+ l)én—um.
Replacing m, by #*!, x,, by /! and repeating the previous constructions, we obtain the point
Ftle P P94 with,
which satisfies the inequality
l#*2- %% < o(a,), 24)

where /72 € ,,(t/12).
It follows from the relation (see property 6°)

(X(F(tj+2; tj+1, xj+1)_xj+1’ F(lj+2; tj+1, i’j+1) —ij+l) SAnLEn—(j+l)
that the following point exists
J*2e F(ri+2; tj+],xj+1)’
satisfying the inequality
"(xj+2_xj+l) @< AnLén—(j+ b
and so also the inequality
I *2 -+ <1+ LA )& YD,
Hence, bearing inequality (2.4) in mind, we have
| *2 3 +2 <gn-U*D,
Hence, we obtain the point ¥+ € F(#+?; #*!, ¥*1), which satisfies the inclusion

j+2 ~ j+2
P e Qu(f” Yer-u+2.
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Continuing this processing up to the instant # =8, we obtain the remaining points x € F(r'; #~1, x~1), which satisfy
the inclusions
XeQu(f)pi, i= j+3,j+4,..,n.
We have thereby proved the existence of the required trajectory (2.1), which satisfies inclusions (2.2).

We will now introduce a function which is a continuous extension of the trajectory obtained into the section [#+, 0].
Suppose

xn(nn)’ t*SISnn
t) =
() x,(2), M,<t<6.
Forn=1,2,..., from the uniformly bounded and equicontinuous sequence {y,(f)} we can separate out a uniformly
converging subsequence. Without loss of generality, we will assume that the sequence {y,(r)} itself converges in [#+,
0] uniformly to a certain function x(¢).

It is easy to show that the function x(-) is a trajectory of the generalized dynamical system (1.1): x(-) € X(#«, x=).
We will show that the trajectory x(-) does not leave the phase constraints:

x(t) € ®(t), te [ty 0]. 2.5)

We fix an arbitrary instant 7 € [#+, 0] and put 7, =1,,(f) (everywhere henceforthn =1, 2,. . .). By virtue of the inclusions
(see (2.2))

%(T,) € Qu(t,);, Qu(t,) € B(T,);

we obtain the points X, € ®(7,), which satisfy the inequalities
[%,(T,) = Xal| < 28,
Consequently, together with the limit relations
x(#) = limy,(#) = limy,(t,) = limx,(t,) (2.6)
the following limit relation (see Lemma 2.1) holds
limx,(t,) = limy,,. 2.7)
The limit relation
limy, € ®(¢). (2.8)

then follows from the convergence lim T, =7, the boundedness of the sequence {x,} and the closedness of the set ®.

The inclusion (2.5) is proved by virtue of limit relations (2.6)—(2.8).

Hence, for any point (., x,) € Q9 when 7« < 8, we obtain the trajectory x(-) € X(¢+, x+), which is viable in ®.

It is also obvious that any point (z,, x4) € Q0 satisfies the inclusion (¢, x+) € ® when 7+ =#0.

The inclusion Q° C Q is proved.

We will prove the inverse inclusion ¢ Q°.

Consider the subdivision I',, of the time interval I and all the sections Q(¢') (£ € I',,) of the set €2, which are non-empty.
We will put 7, = {#' € T',: Q(') # @}; obviously the set T}, possesses the property that if # € T, then £*! € T,.

We will show the correctness of the inclusion

Q) cQu(t)y, reT, (2.9)
The proof is carried out by induction, beginning from the final instant #* = 6.
At the instant #* = 0 the inclusion (2.9) is satisfied by virtue of the equalities 2(0) = ®(0) = €2,(6)zn.

We will assume that at the instant #*! € T, the inclusion Q(#"+!) C €,(#+1),11 is satisfied. We take an arbitrary
point x* € Q(t'); the following point corresponds to it

i+l . . . .
xt+ e Q(t‘+l), xH-Ie F(t'“;t',xl).
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Taking the point ¥'+! € Q,(#+1) closest to x*!, by virtue of the induction assumption we have
"xi+1 _;Ci+1“ SEHI.

Hence we have the inequality (see Assertion 2.2)

a(i;,—l(ti; A+ xi+l)_xi+l,}“;,—1(ti; £ ii+l)_ii+1)sAnL£i+l. (2.10)
We take the point
e F_l(t', tl+1, i+1)

as the closest to x'; then the following inequality holds (see Assertion 2.1)
I+ - #] < w(a,). @2.11)

It follows from inequality (2.10) that there is a point
s I':—l(ti; g1l
which satisfies the inequality
"(ii—xiﬂ) _ (i_i_;cii-l)" SAnL€i+l,
and so, also, the inequality
l# -l < (1 + LaE!
Then, bearing inequality (2.11) in mind, we have
”xi - ii“ <&
Since x' € Q(#'), the inclusion x' € ®(#') holds; consequently, &' € ®(#;)i and so i e Qu(th).
Since the choice of the point x' € Q(#') is arbitrary, the inclusion Q(#') C €2, (#'); is proved.
Moreover, inclusion (2.9) is proved.

We will use inclusion (2.9) to prove the inclusion  C Q.
When #: =0 the inequalities 2(#+)=®(0) and QO(t,) = ®(0) are satisfied. Consequently, the inclusion Q(t,) C

Q9(t,) holds.
For any fixed #+ <6 we choose an arbitrary point (+, x«) € Q. The trajectory x(¢) € X(¢+, x+), which is viable in @,

corresponds to it.
We fix the number n. Suppose m, =t,(¢«). It follows from the inclusions x(m,) € 2(n,) and (2.9) that a point

Xn € Q2,(,,) exists, which satisfies the inequality

[x(ny) = x| <&,
Then, using the inequality

ICta 250 = (Mg XD < [t = M| + [ = (M) + [x (M) = 3]

we have
[(4s x4) = (M )| S (1 + M)A, +E,

whence, by virtue of the limit relation lim A, =0 and Lemma 2.1, we obtain
(t4, x4) = lim(M,,, x,).

Consequently, (7, x4) € Q0.

When 7+ < 0 the inclusion Q(t,) C Q°(t,) is proved.

The inclusion € C Q° follows from relations €2(8) C €°(6) and Q(z,.) C QO(t,)(tx < ).
The equality Q ¢ O follows from the inclusions ° ¢ @, Q c Q0. O
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3. Discretization of the phase space

We will replace the phase space R™ by a certain y-grid. A number of constructions will correspond to each
subdivision I',.

A. We will subdivide the space R into m-dimensional cubes B; with centres b; and vertices which are distant from
the centres by an amount v,. We will choose the quantity vy, so that it satisfies the inequality

Yu<A,.

The infinite set of centres b; will be called the -y,-grid of the space R™, and we will denote it by N¥=(R™).

Suppose X+ is a certain compactum in R™. We will isolate all the cubes B; (j=1, 2,. . ., Jo), for which B; N X # D,
since the set X« is bounded, and the number Jy is finite. We will consider the centres b; (j=1, 2,.. ., Jo) of these
cubes. When & >0 we will assume

N"(X,) = {b;:j=1,2,..,J5}, Ni(Xy) = N"(N"(Xy4),)-
Note that
(X N (X)) S Y,
B. We will assign a finite 8,-grid to each set F(t*; tx, xx) (1, x) € I X R™, 1 € [, 0]) using a certain rule

F8,.(‘*§ Lo Xs) = {fre F(t* t, x4) 1 k=12, .., Ko}

such that
QU(F(t*; ty, X4, Fﬁn(t*; Ly X5)) < 8n'
The number J,, will be chosen to have any value which satisfies the inequality

5 <A’

n n*

We will assume that
For (843 1%, x%) = x* = F5 (1%; 14, x*)
ﬁg:(t*; t*, X*) = U{I-’E:(t*; t*, x*) 1 x* € X*}, X*cR".
Note that we have the estimate
(F (145 1%, x*), I:"E:(t*; t*, x*)) < 9,.
C. We will specify the recurrent sequence {&'} of number &
§ =y, & =2y,+0,)+8,+(1+LAJE", i=n-1n-2.0.

Suppose &, is the greatest of the numbers {&'}.

Lemma 3.1. The following limit relation holds
limg, = 0.

The proof of this lemma is similar to the proof the Lemma 2.1 and will not be given here.
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We will make the sequence {S2,@)) of the sets Q, (#) e NY«(R™)(f e T,,), specified recurrently, beginning from a
finite instant * =0, correspond to each subdivision of T'),.

Definition 3.1. We will assume that
_ — i . i wool i il = il
0,(0) = NH@(©): Q) = Ni(@ENNN"(Fy, (517, Q"))
i=n-1,n-2,...,0.

Hence, the sequence {€,(t)} is a backwardly specified sequence of sets Q,(#) on the grid NY»(R™). We will
determine the limit of this sequence when the diameter of the subdivision I';, approaches zero.

Definition 3.2. We will assume that QO is a set of all points (t«, x+) € I x R” for which we have the sequence
{(nn’ xn) : nn = tn(t*)’ xn € ﬁn(nn)}

such that (¢, x+) =lim(m;;, x,).

It follows from Definition 3.2 that Q° ¢ ®.
The set QO is non-empty, since the equality $2,(8) = N2z (P(0)) holds, and for the section Q°(0) = {x € R™ :
(0, x) € Q0} it is easy to prove the relation Q°(0) = ®(8).

Theorem 3.1.  The set QO is the viability kernel of the generalized dynamical system (1.1) in the set ®.

The proof is largely similar to the proof of Theorem 2.1 (the difference caused by the presence of constructions
from subsections A and B are of a technical character) and will not be given here.
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